123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- # postgresql/array.py
- # Copyright (C) 2005-2017 the SQLAlchemy authors and contributors
- # <see AUTHORS file>
- #
- # This module is part of SQLAlchemy and is released under
- # the MIT License: http://www.opensource.org/licenses/mit-license.php
- from .base import ischema_names
- from ...sql import expression, operators
- from ...sql.base import SchemaEventTarget
- from ... import types as sqltypes
- try:
- from uuid import UUID as _python_UUID
- except ImportError:
- _python_UUID = None
- def Any(other, arrexpr, operator=operators.eq):
- """A synonym for the :meth:`.ARRAY.Comparator.any` method.
- This method is legacy and is here for backwards-compatibility.
- .. seealso::
- :func:`.expression.any_`
- """
- return arrexpr.any(other, operator)
- def All(other, arrexpr, operator=operators.eq):
- """A synonym for the :meth:`.ARRAY.Comparator.all` method.
- This method is legacy and is here for backwards-compatibility.
- .. seealso::
- :func:`.expression.all_`
- """
- return arrexpr.all(other, operator)
- class array(expression.Tuple):
- """A PostgreSQL ARRAY literal.
- This is used to produce ARRAY literals in SQL expressions, e.g.::
- from sqlalchemy.dialects.postgresql import array
- from sqlalchemy.dialects import postgresql
- from sqlalchemy import select, func
- stmt = select([
- array([1,2]) + array([3,4,5])
- ])
- print stmt.compile(dialect=postgresql.dialect())
- Produces the SQL::
- SELECT ARRAY[%(param_1)s, %(param_2)s] ||
- ARRAY[%(param_3)s, %(param_4)s, %(param_5)s]) AS anon_1
- An instance of :class:`.array` will always have the datatype
- :class:`.ARRAY`. The "inner" type of the array is inferred from
- the values present, unless the ``type_`` keyword argument is passed::
- array(['foo', 'bar'], type_=CHAR)
- .. versionadded:: 0.8 Added the :class:`~.postgresql.array` literal type.
- See also:
- :class:`.postgresql.ARRAY`
- """
- __visit_name__ = 'array'
- def __init__(self, clauses, **kw):
- super(array, self).__init__(*clauses, **kw)
- self.type = ARRAY(self.type)
- def _bind_param(self, operator, obj, _assume_scalar=False, type_=None):
- if _assume_scalar or operator is operators.getitem:
- # if getitem->slice were called, Indexable produces
- # a Slice object from that
- assert isinstance(obj, int)
- return expression.BindParameter(
- None, obj, _compared_to_operator=operator,
- type_=type_,
- _compared_to_type=self.type, unique=True)
- else:
- return array([
- self._bind_param(operator, o, _assume_scalar=True, type_=type_)
- for o in obj])
- def self_group(self, against=None):
- if (against in (
- operators.any_op, operators.all_op, operators.getitem)):
- return expression.Grouping(self)
- else:
- return self
- CONTAINS = operators.custom_op("@>", precedence=5)
- CONTAINED_BY = operators.custom_op("<@", precedence=5)
- OVERLAP = operators.custom_op("&&", precedence=5)
- class ARRAY(SchemaEventTarget, sqltypes.ARRAY):
- """PostgreSQL ARRAY type.
- .. versionchanged:: 1.1 The :class:`.postgresql.ARRAY` type is now
- a subclass of the core :class:`.types.ARRAY` type.
- The :class:`.postgresql.ARRAY` type is constructed in the same way
- as the core :class:`.types.ARRAY` type; a member type is required, and a
- number of dimensions is recommended if the type is to be used for more
- than one dimension::
- from sqlalchemy.dialects import postgresql
- mytable = Table("mytable", metadata,
- Column("data", postgresql.ARRAY(Integer, dimensions=2))
- )
- The :class:`.postgresql.ARRAY` type provides all operations defined on the
- core :class:`.types.ARRAY` type, including support for "dimensions", indexed
- access, and simple matching such as :meth:`.types.ARRAY.Comparator.any`
- and :meth:`.types.ARRAY.Comparator.all`. :class:`.postgresql.ARRAY` class also
- provides PostgreSQL-specific methods for containment operations, including
- :meth:`.postgresql.ARRAY.Comparator.contains`
- :meth:`.postgresql.ARRAY.Comparator.contained_by`,
- and :meth:`.postgresql.ARRAY.Comparator.overlap`, e.g.::
- mytable.c.data.contains([1, 2])
- The :class:`.postgresql.ARRAY` type may not be supported on all
- PostgreSQL DBAPIs; it is currently known to work on psycopg2 only.
- Additionally, the :class:`.postgresql.ARRAY` type does not work directly in
- conjunction with the :class:`.ENUM` type. For a workaround, see the
- special type at :ref:`postgresql_array_of_enum`.
- .. seealso::
- :class:`.types.ARRAY` - base array type
- :class:`.postgresql.array` - produces a literal array value.
- """
- class Comparator(sqltypes.ARRAY.Comparator):
- """Define comparison operations for :class:`.ARRAY`.
- Note that these operations are in addition to those provided
- by the base :class:`.types.ARRAY.Comparator` class, including
- :meth:`.types.ARRAY.Comparator.any` and
- :meth:`.types.ARRAY.Comparator.all`.
- """
- def contains(self, other, **kwargs):
- """Boolean expression. Test if elements are a superset of the
- elements of the argument array expression.
- """
- return self.operate(CONTAINS, other, result_type=sqltypes.Boolean)
- def contained_by(self, other):
- """Boolean expression. Test if elements are a proper subset of the
- elements of the argument array expression.
- """
- return self.operate(
- CONTAINED_BY, other, result_type=sqltypes.Boolean)
- def overlap(self, other):
- """Boolean expression. Test if array has elements in common with
- an argument array expression.
- """
- return self.operate(OVERLAP, other, result_type=sqltypes.Boolean)
- comparator_factory = Comparator
- def __init__(self, item_type, as_tuple=False, dimensions=None,
- zero_indexes=False):
- """Construct an ARRAY.
- E.g.::
- Column('myarray', ARRAY(Integer))
- Arguments are:
- :param item_type: The data type of items of this array. Note that
- dimensionality is irrelevant here, so multi-dimensional arrays like
- ``INTEGER[][]``, are constructed as ``ARRAY(Integer)``, not as
- ``ARRAY(ARRAY(Integer))`` or such.
- :param as_tuple=False: Specify whether return results
- should be converted to tuples from lists. DBAPIs such
- as psycopg2 return lists by default. When tuples are
- returned, the results are hashable.
- :param dimensions: if non-None, the ARRAY will assume a fixed
- number of dimensions. This will cause the DDL emitted for this
- ARRAY to include the exact number of bracket clauses ``[]``,
- and will also optimize the performance of the type overall.
- Note that PG arrays are always implicitly "non-dimensioned",
- meaning they can store any number of dimensions no matter how
- they were declared.
- :param zero_indexes=False: when True, index values will be converted
- between Python zero-based and PostgreSQL one-based indexes, e.g.
- a value of one will be added to all index values before passing
- to the database.
- .. versionadded:: 0.9.5
- """
- if isinstance(item_type, ARRAY):
- raise ValueError("Do not nest ARRAY types; ARRAY(basetype) "
- "handles multi-dimensional arrays of basetype")
- if isinstance(item_type, type):
- item_type = item_type()
- self.item_type = item_type
- self.as_tuple = as_tuple
- self.dimensions = dimensions
- self.zero_indexes = zero_indexes
- @property
- def hashable(self):
- return self.as_tuple
- @property
- def python_type(self):
- return list
- def compare_values(self, x, y):
- return x == y
- def _set_parent(self, column):
- """Support SchemaEventTarget"""
- if isinstance(self.item_type, SchemaEventTarget):
- self.item_type._set_parent(column)
- def _set_parent_with_dispatch(self, parent):
- """Support SchemaEventTarget"""
- if isinstance(self.item_type, SchemaEventTarget):
- self.item_type._set_parent_with_dispatch(parent)
- def _proc_array(self, arr, itemproc, dim, collection):
- if dim is None:
- arr = list(arr)
- if dim == 1 or dim is None and (
- # this has to be (list, tuple), or at least
- # not hasattr('__iter__'), since Py3K strings
- # etc. have __iter__
- not arr or not isinstance(arr[0], (list, tuple))):
- if itemproc:
- return collection(itemproc(x) for x in arr)
- else:
- return collection(arr)
- else:
- return collection(
- self._proc_array(
- x, itemproc,
- dim - 1 if dim is not None else None,
- collection)
- for x in arr
- )
- def bind_processor(self, dialect):
- item_proc = self.item_type.dialect_impl(dialect).\
- bind_processor(dialect)
- def process(value):
- if value is None:
- return value
- else:
- return self._proc_array(
- value,
- item_proc,
- self.dimensions,
- list)
- return process
- def result_processor(self, dialect, coltype):
- item_proc = self.item_type.dialect_impl(dialect).\
- result_processor(dialect, coltype)
- def process(value):
- if value is None:
- return value
- else:
- return self._proc_array(
- value,
- item_proc,
- self.dimensions,
- tuple if self.as_tuple else list)
- return process
- ischema_names['_array'] = ARRAY
|